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Abstract

Clustering methods have been used extensively in computer vision and pattern

recognition. Fuzzy clustering has been shown to be advantageous over crisp (or traditional)

clustering in that total commitment of a vector to a given class is not required at each

iteration. Recendy fuzzy clustering methods have shown spectacular ability to detect not

only hypervolume clusters, but also clusters which are actually "thin shells", i.e., curves

and surfaces. Most analytic fuzzy clustering approaches are derived from Bezdek's Fuzzy

C-Means (FCM) algorithm. The FCM uses the probabilistic constraint that the

memberships of a data point across classes sum to one. This constraint was used to

generate the membership update equations for an iterative algorithm. Unfortunately, the

memberships resulting from FCM and its derivatives do not correspond to the intuitive

concept of degree of belonging, and moreover, the algorithms have considerable trouble in

noisy environments. Recently, we cast the clustering problem into the framework of

possibility theory. Our approach was radically different from the existing clustering

methods in that the resulting partition of the data can be interpreted as a possibilistic

partition, and the membership values may be interpreted as degrees of possibility of the

points belonging to the classes. We constructed an appropriate objective function whose
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minimum will characterize a good possibilistic partition of the data, and we derived the

membership and prototype update equations from necessary conditions for minimization of

our criterion function. In this paper, we show the ability of this approach to detect linear

and quartic curves in the presence of considerable noise.
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I. Introduction
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Clustering has long been a popu2_ approach to unsupervised pattern recognition. It

has become more attractive with the connection to neural networks, and with the increased

attention to fuzzy clustering. In fact, recent advances in fuzzy clustering have shown

spectacular ability to detect not only hypervolume clusters, but also clusters which are

actually "thin shells", i.e., cu_'es and surfaces [1-7]. One of the major factors that

influences the determination of appropriate groups of points is the "distance measure"

chosen for the problem at hand. Fuzzy clustering has been shown to be advantageous over

crisp (or traditional) clustering in that total commitment of a vector to a given class is not

required at each iteration.

Boundary detection and surface approximation are important components of

intermediate-level vision. They are the first step in solving problems such as object

recognition and orientation estimation. R_ently, it has been shown that these problems can

be viewed as clustering problems with _propriate distance measures and prototypes [1-7].

Dave's Fuzzy C Shells (FCS) algorithm [2] and the Fuzzy Adaptive C-Shells (FACS)

algorithm [7] have proven to be successful in detecting clusters that can be described by

circular arcs, or more generally by elliptical shapes. Unfortunately, these algorithms are

computationally rather intensive since they involve the solution of coupled nonlinear

equations for the shell (prototype) parameters. These algorithms also assume that the

number of clusters are known. To overcome these drawbacks we recently proposed a

computationally simpler Fuzzy C Spherical Shells (FCSS) algorithm [6] for clustering

hyperspherical shells and suggested an efficient algorithm to determine the number of

clusters when this is not known. We also proposed the Fuzzy C Quadric Shells (FCQS)

algorithm [5] which can detect more general quadric shapes. One problem with the FCQS

algorithm is that it uses the algebraic distance, which is highly nonlinear. This results in

unsatisfactory performance when the data is not very "clean" [7]. Finally, none of the



algorithmsc,__rahandlesituationsin whichtheclustersincludelines/planesandthereis much

noise. In ['_l, we addressedthose issuesin a new approachcalled Plano-Quadric

Clustering.h this paper,weshowhow thatalgorithm,coupledwith ournew possibilistic

clustering;cznaccuratelyfind linearandquadriccurvesin thepresenceof noise.

Most analytic fuzzy clusteringapproachesarederivedfrom Bezdek'sFuzzyC-

Means (FCM) algorithm [9]. The FCM uses the probabilistic constraint that the

membershipsof a datapoint acrossclassesmust sumto one.This constraintcamefrom

generalizinga crispC-Partition of a dataset,and wasusedto generatethe membership

updateequations for an iterative algorithm. These equations emerge as necessary conditions

for a global minimum of a least-squares type of criterion function. Unfortunately, the

resulting memberships do not represent one's intuitive notion of degrees of belonging, i.

e., they do n_t represent degrees of "typicality" or "possibility".
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There is another important motivation for using possibilistic memberships. Like all

unsupervised techniques, clustering (crisp or fuzzy) suffers from the presence of noise in

the data. Sir, ce most distance functions are geometric in nature, noise points, which are

often quite distant from the primary clusters, can drastically influence the estimates of the

class prototypes, and hence, the final clustering. Fuzzy methods ameliorate this problem

when the number of classes is greater than one, since the noise points tend to have

somewhat smaller membership values in all the classes. However, this difficulty still

remains in the fuzzy case, since the memberships of unrepresentative (or noise) points can

still be significantly high. In fact, if there is only one real cluster present in the data, there is

essentially no difference between the crisp and fuzzy methods.

On the other hand, if a set of feature vectors is thought of as the domain of

discourse for a collection of independent fuzzy subsets, then there should be no constraint

on the sum of the memberships. The only real constraint is that the assignments do really

represent fuzzy membership values, i.e., they must lie in the interval [0,1]. In [10], we cast
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the clustering problem into the framework of possibility theory. We briefly review this

approach, and show it's superiority to recognize shapes from noisy and incomplete data_

II. Possibilistic Clustering Algorithms

The original FCM formulation minimizes the objective function given by

C N d2
= _, _, (flij) m subject to l.lij = 1 for allj. (1)J (L,U) i = 1 j = 1 ij' i= 1

In (1), L = (X 1..... XC) is a C-tuple of prototypes, _ is the distance of feature point xj to

cluster 2i" N is the total number of feature vectors, C is the number of classes, and U =

[pU] is a C xN matrix called the fuzzy C-partition matrix [9] satisfying the following

conditions:

Pij _ [0,1] for all i and j,

N

O< _/t.: <N for alli.
1=1

C

/aq = I for all j, and
i=l

Here, I.tij is the grade of membership of the feature point xj in cluster Ai, and m _ [ 1,oo)

is a weighting exponent called the fuzzifier. In what follows, 2 i will also be used to denote

the ith cluster, since it contains all of the parameters that define the prototype of the cluster.

Simply relaxing the constraint in (1) produces the trivial solution, i.e., the criterion

function is minimized by assigning all memberships to zero. Clearly, one would like the

memberships for representative feature points to be as high as possible, while

unrepresentative points should have low membership in all clusters. This is an approach

consistent with possibility theory [l l]. The objective function which satisfies our

requirements may be formulated as:



C N C N

L,U) = i = 1 j = _ij- i= j = "

g

II

where rli are suitable positive numbers. The first term demands that the distances from the

feature vectors to the prototypes be as low as possible, whereas the second term forces the

Pi) to be as large as possible, thus avoiding the trivial solution. The following theorem,

proved in [9], gives necessary conditions for minimization, hence, providing the basis for

an iterative algorithm.

Theorem:

Suppose that X = {x I, x 2 ..... XN} is a set of feature vectors, L = (_1 ..... &C) is a

C-tuple of prototypes. _ is the distance of feature point xj to the cluster prototype Ai, (i

= 1 ..... C; j = I ..... N), and U = [#ij] is a C xN matrix of possibilistic membership

values. Then Umaybe a global minimum forJm(L,U ) only if_i] = [1 + (d_q)_l] "1

The necessary conditions on the prototypes are identical to the corresponding conditions in

the FCM and its derivatives.

Thus, in each iteration, the updated value oflzij depends only on the distance ofxj.

from Ai, which is an intuitively pleasing result. The membership of a point in a cluster

should be determined solely by how far it is fi'om the prototype of the class, and should not

be coupled to its location with respect to other classes. The updating of the prototypes

depends on the distance measure chosen, and will proceed exactly the same way as in the
= .......

case of the FCM algorithm and its derivatives.

The value of r/i determines the distance at which the membership value of a point in

a cluster becomes 0.5 (i. e., "the 3 dB point"). Thus, it needs to be chosen depending on

the desired "bandwidth" of the possibility (membership) distribution tbr each cluster. This
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value could be the same for all clusters, if all clusters are expected to be similar. In general,

it is desirable that r/i relates to the overall size and shape of cluster 2i. Also, it is to be

noted that rli determines the relative degree to which the second term in the objective

function is important compared to the first. If the two terms are to be weighted roughly

equally, then r/i should be of the order of d 2- In practice we find that the following
q-

definition works best.
N

m d 2_-tl'l ij ij

j=l
rli- N

j--1

(3)

This choice makes r/i the average fuzzy intra-cluster distance of cluster/]-i. The value of r/i

can be fixed for all iterations, or it may be varied in each iteration. When r/iis varied in

each iteration, care must be exercised, since it may lead to instabilities. Our experience

shows that the final clustering is quite insensitive to large (an order of magnitude)

variations in the values of rli.

III. The Possibilistic C Plano-Quadric Shells Algorithm

Suppose that we are given a second degree curve _'i characterized by a prototype

vector

T
Pi = [Pi 1, Pi2 ..... Pir]

to which it is desired to fit points xj obtained through the application of some edge

detection algorithm. If a point x has coordinates [x 1..... Xn]. then let

2q = [x , x 2 ..... x n, XlX 2 .... .r(n.l)Xn,Xl,X2 ..... Xn, 1]T •

When the exact (geometric) distance has no closed-form solution, one of the methods

suggested in the literature is to use what is known as the "approximate distance" which is



the first-order approximationof the exact distance.

approximatedistanceof apoint fl'omacurveisgivenby

iVd_72- piTDjDjTpi

It is easy to show [12] that the

(4)

m

i

D

i

where Vd2Qij is the gradient of the distance functional III

2
piTq = [Pi l, Pi2 ..... Pir][X 2, x] ..... Xn, X l X2 .... ,X(n-1)Xn ,x l , x2 ..... Xn, 1] T

evaluated atxj. In (4) the matrix Dj is simply the Jacobian ofq evaluated atxj.

One can easily reformulate the quadric shell clustering algorithm with d_Aij as the

underlying distance measure. It was shown in [8] that the solution to the parameter

estimation problem is given by the generalized eigenvector problem

FiPi = liGiPi, (6)

where
N

Fi = j =Z 1 (l.tij)m Mj,

Mj = qj qT, and

(5) "
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Gi = j Z 1 (izq)m Dj Dj T,

which can be converted to the standard eigenvector problem if the matrix Gi is not rank-

deficient. Unfortunately this is not the case. In tact, the last row of Dj is always [0 ....

,0]. Equation (6) can still be solved using other techniques that use the modified Cholesky

decomposition [13], and the solution is computationally quite inexpensive when the feature

space is 2_D or 3-D. Another advantage of this constraint is that it can also fit lines and
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planes in addition to quadfics. Our experimental results show that the resulting algorithm,

which we call the Possibilistic C Plano-Quadric Shells (PCPQS) algorithm, is quite robust

in the presence of poorly defined boundaries (i. e., when the edge points are somewhat

scattered around the ideal boundary curve in the 2-D case and when the range values are not

very accurate in the 3-D case). It is also very immune to impulse noise and outliers. Of

course, if the type of curves required are restricted to a single type, e.g., lines, or circles,

or ellipses, simpler algorithms can be used with possibilistic updates, as will be seen.

IV. Determination of Number of Clusters

The number of clusters C is not known a priori in some pattern recognition

applications and most computer vision applications. When the number of clusters is

unknown, one method to determine this number is to perform clustering for a range of C

values, and pick the C value for which a suitable validity measure is minimized (or

maximized) [14]. However this method is rather tedious, especially when the number of

clusters is large. Also, in our experiments, we found that the C value obtained this way

may not be optimum. This is because when C is large, the clustering algorithm sometimes

converges to a local minimum of the objective function, and this may result in a bad value

for the validity of the clustering, even though the value of C is correct. Moreover, when C

is greater than the optimum number, the algorithm may split a single shell cluster into more

than one cluster, and yet achieve a good value for the overall validity. To overcome these

problems, we proposed in [8] an alternative Unsupervised C Shell Clustering algorithm

which is computationally more efficient, since it does not perform the clustering for an

entire range of C values.

Our proposed method progressively clusters the data starting with an overspecified

number Cmax of clusters. Initially, the FCPQS algorithm is run with C=Cmax. After the

algorithm converges, spurious clusters (with low validity) are eliminated; compatible



clustersaremerged;and pointsassignedto clusterswith goodvalidity are temporarily

removedfrom the-datasetto reducecomputations.TheFCPQSalgorithmis invokedagain

with the remaining featurepoints. The above procedureis repeateduntil no more

elimination,merging,or removing occurs,or until C=I.

V. Examples of Possibilistic Clustering for Shape Recognition

Figures 1 and 2 show the detection of a circular "fractal edge" from a

synthetically generated image. Figure l(a) is the original composite fractal image; figure

l(b) shows what a gray-scale edge operator finds (or doesn't find); figure 1(c) is the output

of the horizontal fractal edge operator; with figure l(d) giving the maximum overall

response of the fractal operators in four directions. Figure 2(a) depicts the (noisy)

thresholded and thinned result from figure l(d). Figure 2(b) gives the f'mal prototype found

by the FPQCS (which, since there is only one cluster present, is the same as the crisp

version). Note how the presence of noise distorts the final prototype. Figure 2(c) shows

the possibilistic algorithm output, which is superimposed on the original image in figure

2(d). The results of the PPQCS algorithm are virtually unaffected by noise. Several

examples comparing crisp, fuzzy and possibilistic versions of clustering can be found in

[6,8,10].

Figure 3 depicts the algorithm applied to the image of a model of the Space Shuttle.

Figure 3(a) is the original image. Figure 3(b) gives the output of a typical edge operator.

Note that, due to the rather poor quality of the original image, the edges found both noisy

and incomplete. This data was then input into the possibilistic plano-quadric clustering

algorithm. Figure 3(c) gives the eight complete prototypes which were found after running

the algorithm. Finally, figure 39(d) displays the prototype drawn only where sufficient

edges points exist.

VI. Conclusions
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In this paper,wedemonstratedhow our newpossibilisticapproachto objective-

function-basedclusteringcoupledwith ourplano - quadr.cshellsalgorithmcanrecognize

first and seconddegreeshapesfrom incompleteand noisyedgedata.This approachis

superiorto bothcrispandfuzzy clustering,aswell asto traditionalmethodssuchasthe

HoughTransform. Extensionsof this approachto otherclassesof shapesis currently

underway.
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Figure 1. Detection of a fractal circular edge.
(a) Upper Left. Original fi'actalcomposite image.
(b) Upper Right. Output of gray scale edge operator.
(c) Lower Left. Output of"ho|izontal" fractal edge operator.
(d) Lower Right. Results of Maximum magnitude o."outputs of four directions of fractal operators.
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Figure 2. Recognition of circular boundarn. .

(a) Upper Left. Figure l(d) threshofded and thinned•
(b) Upper Right. Circular prototype found by fuzzy (or crisp) clustering.
(c) Lower LefL Circular prototype found by possibilistic clustering.
(d) Lower Right_ Possibilistic protot2,?e superimposed on original image.
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Figure 3. Reccgnir2on of Shuttle model boundaries.

(a) Upper Left. Original Shuttle image.
(b) Upper R.igl::_ Incomplete and noisy edges tbund by edge operator.
(c) Lower Left. Prototypes tbund by Possibilistic Plano-Quadric clustering.
(d) Lower Rigkt. Possibilistic prototypes superimposed drawn where there is sufficient edge

information.
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Pose Estimation Using Possibilistic Clustering

In the Third Quarter report, we described how the Unsupervised C Quadric Shells

(UCQS) algorithm could be used to estimate the pose of the shuttle. The shuttle's image is

taken from the back so that the exhaust nozzles and the back edges of the three wings are

apparent. Given an original unrotated image, the exhaust nozzles can be parametrized by

three circles, and the three wings can be parametrized by three straight lines. These

parameters are easily determined by the UCQS algorithm. As the shuttle rotates, the shape

of the nozzles will change from circles to ellipses, so will the orientation of the straight

lines representing the three wings. The UCQS algorithm is used in order to cluster this

edge image and determine the parameters of the ellipses and lines. Finally, these parameters

can be used to solve for the translation and rotation parameters, as long as the translation is

made in the image plane. In fact, depth information can also be derived from the change in

the size of the nozzles.

We also consider the case where only line information is available. Once again, our

new possibilistic plano-quadric clustering approach is used to detect and recognize the

linear segments. In what follows, derivation of pose parameters is given for both the case

where three corresponding line segments have been identified, and where one circle and

one line have been matched.
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POSE ESTIMATION:

The 3-D object attitude in space can be determined from a single perspective image.

Dhome et al [ 1] developed a method to solve for the three-dimensional attitude of an object

based on the perspective projection of three image lines. Krishnapuram & Casasent [2]

developed a method for determining two of the three rotation angles necessary to describe

an object attitude in 3-D space from a single perspective projection of one circle.
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I. Determination of The Attitude of One Object From Three Lines:

The perspective projection of a point Pi = (Xi, Yi, Zi) on an image is the point Pi

= (xi, Yi, zi) = (Xi f/Z, Yi f/Z, f). Let li be an image line characterized by a vector vi =

(ai, bi, 0) and a point Pi = (xi, Yi, f). li is the perspective projection of a space line Li.

Therefore it lies in the "interpretation plane" containing the origin of the coordinate system

O and the image line li. The normal Ni to this plane is perpendicular to vi and the vector

Opi. Thus Ni = vi ¥ Opi = (bi f, -ai f, di) T, where di = ai Yi - bi xi is the Euclidean

distance between the center of the image and line li. If Vi = (Ai, Bi, Ci) T is the director

vector of the space line Li, then it must be orthogonal to Ni, hence Vi. Ni = 0 implying

that :

(Ai, Bi, Ci) T . (bi, -ai, di/f) = 0 (1)

Consider three object lines in 3-D space LOb i = 1..... 3 def'med in a model reference frame

(Som). The director vector of L0i is V0i = (A0i, B0i, C0i) T. When the object is rotated in 3-

D space, the lines L0i are rotated into lines L3i. Therefore

(A3i, B3i, C3i) T = Rotl3"/(A0i, B0i, C0i) T (2)

where Rocl3_ is the rotation matrix.

The perspective projections of lines L3i are the lines 10i. Equation (1) becomes

:..,..;



(A3i, B3i, C3i)T..(b0i, -a0i, doi/f) T =

Rotl3 7 (A0i, Boi, C0i) T. (b0i, -a0i, d0i/f) T = 0 (3)

where i = 1..... 3 and or, 13,and y are the unknown rotation angles about x, y, and z axes

respectively. Solving this system of equations is too complicated. A specially defined

model coordinate system (S l m) and a corresponding viewer coordinate system (S I v) can

be used to simplify the problem [1]. With these coordinate systems, only two rotation

angles ot and 13need to be determined, i.e. the system of equations (3) can be reduced to

two equations and two unknowns. First, ct is found by iteratively solving an 8 th order

equation. Then 13is solved for by substitution. When the three lines are coplanar, or when

they form a junction, the 8th order equation reduces to a 4th order equation.

H Determination of the Attitude of an Object From a Circle and a Line:
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Given a circular curve on the x-y plane, and an x' y' view of this curve in a

different coordinate system x' y' z'. The two frames (x, y, z) and (x'. y', z') are related by

a homogenous transformation T, such that

rtllt12t13!llil=|t21 t22t23
t32 t33
0 0

A circle of radius r on the xy plane is described by •
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{x2=+ y2 = r 2 (4) ,.---o (5) --_
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(tl ix' + tl2Y'+tl3z') 2 +

t31x' + t32Y'+t33z' = 0

(t21x' + t22Y'+t23z') 2 = r2 (6)

(7)

Substituting z' in terms of x' and y' from equation (7) into equation (6) yields the equation

for the 2-D projection of the 3-D circular curve onto an arbitrary x' y' plane. Making use of

the fact that the columns of T are mutually orthogonal unit vectors, we obtain

2 $ 2(l+--_-)x '2 + (1+ )y,2+ t312 t32 ) x'y' =r 2

t 33 t 33 t33

(8)

7 "

w

This is the equation of an ellipse in the (x', y', z') frame. If the parameters of this ellipse

are known, equation (8) can be solved for the transformation parameters t31, t32, and t33.

The transformation matrix T can be written as a function of the rotation angles o_, 13,and 7:.

F-cosy cos13

T-lsiny cos_

-L

cosy sinl3 sino_ - siny coso_

siny sin13 sino_ + cosy cosct

cos13 sins
0

cosy sin13 coscz + siny sincz 0 -]

sin 7 sin13 coscz - cosy sino_ 0 Jcosl3 coso 0
0 1

Having already solved for t31, t32, and t33, a and b can be easily determined from the 3 rd

row of T.

In order to determine the 3 rd angle 7, a line can be used in addition to the circle. In this case

the two rotation angles o_and 13can be determined as discussed previously. Knowing these

two angles, equation (3) with i = 1 (since we have only one line) becomes simple to solve,

since the only unknown is 7-
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